
PenguinoMeter : A New File-I /O Benchmark for L inux®

Ray Bryant, Dave Raddatz, Roger Sunshine

Times N Systems
Austin, Texas

{raybry,daver,rsunshine}@timesn.com

This paper is to appear in
 Proceedings of the 5th Annual Linux Showcase and Conference,

 November 5-10, 2001, Oakland, California

Abstract
PenguinoMeter is a new open-source benchmark for Linux that measures file-system data transfer rates.
PenguinoMeter allows the user to specify the file-system workload to be used in the benchmark in a very flexible
manner. The workload specification is patterned after that of the Intel® Iometer benchmark; the current version of
PenguinoMeter can read configuration files produced by Iometer. A series of comparisons between Iometer and
PenguinoMeter is used to demonstrate that the workloads generated by these two programs appear to be identical.
As an example use of PenguinoMeter, we compare the file system performance of Microsoft Windows 2000
Professional and Linux 2.4.9.

1 Introduction
To date, Linux has not been a significant player in the
file system serving market. This is in large part due to
the lack of availability of a good journaling file system.
(fsck’ing a 50 GB file system after a power fault is not
a strong selling point for most customers in this market
segment.) However, this problem is being solved by a
number of new journaling file systems that are either
available as part of standard distributions or may soon
be available (e.g. ReiserFS [ReiserFS], ext3 [ext3]
IBM® JFS [JFS], and SGITM XFSTM [XFS]). If Linux
based file-servers are to compete in this market (as well
as in the SAN and NAS markets), then good tools need
to exist to enable comparative performance evaluation
of the various Linux file systems as well as
performance comparisons between Linux and non-
Linux implementations. If we compare the
benchmarks available for file systems on Linux (e. g.
Bonnie [Bonnie], Bonnie++ [Bonnie++], IOzone
[IOzone], PostMark [PostMark]) to those available for
under Microsoft® Windows® (e. g. Iometer [Iometer]
from Intel Corporation) it is clear that the latter is far
more sophisticated than the former.

In this paper, we present the design and
implementation details of a new file-I/O benchmark for

Linux. We call this benchmark "PenguinoMeter"1 (or
"pgmeter"). We describe pgmeter as a file-I/O
benchmark instead of a file-system benchmark because
we are principally interested in measuring the rate at
which data can be transferred to and from the file
system as opposed to measuring the rate at which file-
system operations (such as file creation or directory
lookup) can be performed. Since our company is in the
business of producing a storage solution for Windows
and Linux, we are also motivated by the need to
provide a good benchmark to evaluate and improve the
performance of our company's hardware and software
products under Linux.

In the Windows environment, a popular and
sophisticated file-system benchmarking tool called
Iometer is available from Intel Corporation. Pgmeter
is designed to support the same workload-modeling
framework that has made Iometer so successful in the
Windows arena. Pgmeter provides support (with some
restrictions) for reading workload configuration files
produced by Iometer. Thus one can use Iometer
configuration files developed by third parties (see the
Iometer discussion in Section 2 for examples) to test

1 The preferred pronunciation is "pen-GWYN-oh-
meter"; the pronunciation "pen-gwyn-OHM-eter",
while deprecated, is also acceptable.

the same kind of workloads under Linux that have
previously been tested under Windows. Of course,
this is only interesting if it can be demonstrated that
Iometer and pgmeter create similar workloads when
given the same configuration file as input.

To show that this is indeed the case we ported pgmeter
to Windows 2000 using the CygwinTM library
[Cygwin]. We then ran Iometer and the (ported)
version of pgmeter on a representative sample of
workload configuration files. The maximum difference
between the reported results was 2.5% in the 78 trials
we conducted. (See Section 5 below for details.). Thus
we believe it is reasonable to say that both programs
simulate the same kind of workload when given the
same input data.

Of course, this experiment does not demonstrate that
pgmeter under Linux simulates the same workload that
Iometer does under Windows 2000. This is especially
true since Iometer (and our ported version of pgmeter)
bypass the file-system cache under Windows [Iometer].
However, it is still an interesting comparison to run
pgmeter on the two systems. Since Linux has no way
to bypass the file-system buffer cache analogous to that
which exists under Windows, we resort to a traditional
technique of minimizing the impact of the file-system
cache on the results: We use a file that is more than
twice as large as the main memory on the system.
Results of these experiments are presented in Section
5.

While we have tried to make pgmeter simulate a
workload that is as similar as possible to that of
Iometer, there is one significant difference between the
two programs. Pgmeter is an open-source program
that is freely distributed under the GPL. (Intel has
chosen not to distribute the source for Iometer; also
Intel [IntelPers] does not currently plan a port of
Iometer to Linux.) A SourceForgeTM [SourceForge]
project for pgmeter has been established at
pgmeter.source-forge.net. It is our intention to make
source code for pgmeter available for downloading
from that site by the time this paper is published. We
welcome the participation of the open source
community in the pgmeter project. Further details of
this participation will be organized through
pgmeter.sourceforge.net.

In the next sections of this paper, we first examine the
existing file-system benchmark programs and explain
why we feel a new benchmark is required. Next, we
describe the workload-modeling framework of Iometer
and summarize other significant implementation
details available from the Iometer FAQ. We then
discuss how we implemented a corresponding

workload in pgmeter. Following this, we describe the
benchmark comparisons we have performed between
Iometer and the Cygwin version of pgmeter. We also
compare pgmeter running under Windows 2000 to
pgmeter running under Linux 2.4.9. This analysis
demonstrates that Linux file system performance is in
many cases quite good. Finally, we discuss the current
status of the program and directions of future work.

2 File-System Benchmarks
In this section, we discuss a number of file system
benchmarks available under Windows and Linux. This
list is largely taken from the list of I/O benchmarks
available at:
 http://www.acnc.com/benchmarks.html
However, we have only included those benchmarks
whose Web pages appear to be current, and we have
deliberately eliminated benchmarks designed for DOS
or that test specific hardware characteristics of the disk
subsystem. We have also eliminated benchmarks that
appear to be obsolete, unused, or undocumented, or
that do not support a variety of disk workloads.

For our interests, we prefer a benchmark that has the
following characteristics:

• It should be open source and readily portable to
Linux.

• It should support a flexible and realistic workload
specification that allows a user to model a number
of different workloads.

• It should be file-I/O (read and write) as opposed to
file-system operation (file creation and deletion,
directory operations, etc.) intensive. The latter
type of test is more influenced by the design of the
file system itself as opposed to the underlying
block-device software and hardware that we are
interested in testing.

The second point above implies that we are not
interested in trace-driven benchmarks. Trace-driven
benchmarks can be very representative of a particular
workload, but they are cumbersome and difficult to
modify to represent workloads other than that of the
traced system. For example, it is difficult to modify a
trace-driven benchmark to answer such questions as
"What would happen if the average request size was
increased by 20%?". We thus prefer synthetic
workloads that depend on a small number of
parameters to characterize the workload to the trace-
driven workload approach.

With the above in mind, here are the other benchmarks
we considered:

Bonnie and Bonnie++

These two programs are probably among the most well
known and widely used file system benchmarks. They
are simple and easy to use and can be readily ported to
new operating system environments.

Bonnie [Bonnie] measures the rate of writing and then
reading a file using

• Putc() and getc()
• "Efficient" block I/O operations
• Rewriting the existing file

Bonnie then creates 4 child processes that seek
randomly in the file that has been created, read the
block found there, and in 10% of all such reads,
rewrites that block. The rate of executing this
sequence is reported in operations per second. In all
cases, Bonnie also reports the CPU busy time during
each such test.

Bonnie++ [Bonnie++], aside from being written in
C++, adds the following capabilities:

• Bonnie++ supports access to data sets larger than
2GB using multiple files.

• Bonnie++ includes tests of the rate at which the
file-system can create large numbers of files.

The principal drawbacks of both of these programs are
that they are not fully parameterized in terms of
workload characteristics and they do not allow mixture
workloads (mixtures of random and sequential
accesses, for example) to be represented.

NetBench ®

NetBench [NetBench] is a product of Ziff Davis Media,
Inc. It is designed to emulate the load a network of
Windows PC’s would place on an SMB file server.
The workload script can be edited and customized, but
the number of clients required to fully load a server can
be large. Also, since this requires Windows clients and
an SMB file service, it does not really address our need
of benchmarking native file-systems under Linux.

WinBench ®

WinBench is also a product of Ziff Davis Media, Inc.
Although it tests other subsystems as well, it includes a
disk subsystem performance test. This test is designed
to emulate the disk behavior of a mixture of Windows
applications running on an office PC. This is a trace-
driven workload with several components obtained
from traces of a system running office applications and
the Windows operating system itself; a sequential
transfer test is also included. Since this is both a
closed-source and a trace-driven benchmark, it does
not meet our needs.

Dbench

Dbench [Dbench] is a GPL benchmark intended to
emulate the workload created by the Netbench
benchmark. Dbench replays a set of around 90,000
requests that were captured by a network sniffer during
an execution of Netbench. It does not require a large
network of clients, but it is typically run on a system
that is network-attached to the server system. While
Dbench eliminates the need for Windows client
machines, it still issues SMB requests so it requires a
Windows server or a Samba [Samba] server running
under Linux. Since we are primarily interested in
benchmarking native file systems under Linux, this
benchmark does not meet our requirements. Also, this
is a trace-driven benchmark so it does not meet our
flexibility requirements.

IOzone

IOzone [IOzone] is a highly portable file-system
benchmarking tool. It supports a variety of file mode
accesses including sequential, random, read, and re-
read as well as a number of file system interfaces such
as normal and asynchronous I/O. It also supports
multiple threads of execution (on the local system).
However, IOzone does not support variable request
sizes, nor does it support mixtures of reads and writes
or mixtures of sequential and randomly sequenced
requests2. In fact, IOzone is probably better
characterized as a file-system tuning tool instead of
being a benchmark that can model a file system
workload. IOzone is designed to measure file-system
performance at a variety of I/O request sizes and to
produce a report showing the relationship between
throughput and I/O request size. Because of its
inability to represent mixture workloads, IOzone is
unable to model complex workloads such as an OLTP
file-system workload. However, because it is well
known, source code is available, and it has already
been ported to Linux, we have actually used this
benchmark in some of our performance studies.

PostMark

The PostMark [PostMark] benchmark was developed
to model the "small-file" workload that is encountered
when supporting electronic mail and news services
with many users simultaneously accessing the data. As
such, it is file-system operation intensive (create small
file, delete small file, directory lookup, insert, delete,
etc) instead of being file system transfer intensive.

2 IOzone "telemetry" files can be used to model
mixtures of random and sequential accesses but this is
an example of trace-driven workload specification.

This means that PostMark tests file system operations
instead of testing the I/O capabilities of the file system
and its underlying hardware. We are more interested
in the latter than the former so this benchmark does
not meet our needs.

Nbench

NBENCH [Nbench] is a Windows NT and Windows
95 benchmark. It measures disk performance by
writing and reading a 10 MB file sequentially. It uses
the Windows file attribute FILE_NO_BUFFERING to
keep the operating system from caching the file.
Multiple threads are supported, but must be targeted to
different physical disks to avoid seek interference
between the files. Since this benchmark does not
support a customizable workload, and since source
code is not available, it is not appropriate for our work
on Linux.

NTIOGEN and IOGEN

NTIOGEN [NTIOGEN] is an NT port of the Symbios
Logic Unix benchmark IOGEN. It creates a number of
child processes that then generate read and write
requests against either a physical drive, a partitioned
device, or a given file. While one can change the
number of child processes (and hence the number of
outstanding I/O’s) it is not apparent how to modify the
workload in any other way.

Iometer

Intel’s Iometer [Iometer] includes a flexible workload-
modeling framework. This framework allows the user
to specify a mixture of read and write accesses, a
mixture of sequential and random accesses, as well as a
mixture of request sizes. Additionally, Iometer
supports local and remote worker threads. Like
Nbench, Iometer uses the Windows file attribute
FILE_NO_BUFFERING to avoid file system cache
effects while running the test (see the FAQ available
with Iometer). Iometer thus primarily measures the
performance of the disk subsystem and is often used to
evaluate the performance of different disk devices or
SAN or NAS storage devices (see, e. g. [StoReview],
[Etesting], [Dvault], [NetC], [AdRaid], or [NWF]).

The widespread use of Iometer has also lead to the
standardization of certain workloads. For example,
[StoReview] uses the following Iometer workloads:

• File Server: This workload is a mixture of 512
byte to 64 KB transfers with the most popular
transfer size being 4 KB and the mean transfer
size being 11300 bytes. (The complete definition
of this workload is given in the Appendix.) Of

these transfers, 80% are reads and 100% are
random accesses.

• Workstation: This workload consists of 8 KB
transfers of which 80% are reads and 80% are
random accesses.

• Database (which we call OLTP in this paper):
This workload is defined as 8 KB transfers, of
which 67% are reads and 100% are random
accesses.

Intel distributes all of these workloads with Iometer
except for the Workstation workload; Storage Review
created the latter. Another workload distributed with
Iometer is a Web Server workload that is a mixture of
512 byte to 512 KB transfers; with 4K being the most
popular size, and the average transfer size being 16035
bytes. (A complete definition of this workload is also
given in the Appendix.)

Now whether these workloads are actually
representative of their namesakes is not really the
point. Instead the important point is that such
workloads exist and are readily available for
comparison purposes. Thus, one can compare the "file
system" workload on different systems and publish
such a result and readers should be able to find out
what that workload means.

Except for the fact that Iometer is not an open-source
benchmark, it meets all of the rest of our requirements.
Another reason that Iometer is interesting to us is that
we have made extensive use of Iometer in testing our
Windows products; it made perfect sense for us to
desire to have a similar program to assist in evaluation
of our products for Linux

A port of Iometer to Linux was at one point supposed
to be underway at Intel, but our most recent
information on this is that this effort has been
abandoned at the present time [IntelPers]. For this
reason, we decided to develop a program with similar
capabilities for Linux and to make the source code for
this new program readily available.

3 The Iometer Workload Specification
Iometer defines the file system workload in terms of
“workers” and “access specifications” . Each worker
can have multiple access specifications assigned to it.
For a particular benchmark run, only one of these
specifications is active. This allows a series of
benchmark runs to be defined by assigning multiple
workload specifications to a particular worker.

Each access specification consists of a number of
“access lines” . An access line defines the following
quantities:

Size: The I/O size for this access line.

Percent: The fraction of the I/O’s generated by
this access specification that are
generated by the parameters of this line.

% Read: The fraction of the I/O’s generated
according to the parameters of this line
that are read requests.

% Random: The fraction of the I/O’s generated
according to the parameters of this line
that are random requests.

Delay: Delay after burst count of I/O’s have
completed.

Burst: The number of I/O’s in a burst request.

Alignment: The alignment of the I/O requests.

There can be an arbitrary number of access lines per
access specification. For example, see the “Web
Server” and “File Server” workloads described in the
Appendix.

We interpret the “% Read” and “% Random”
parameters as follows: “% Read” is the fraction of
requests generated by an access line that are read
requests. “% Random” gives the probability that the
next I/O request will be randomly selected from all the
possibilities available in the output file. With
probability 100%-“% Random” the next request
generated according to this access line will be for the
next sequential record in the file.

The workload specifications used by Iometer can be
created and saved to an .icf (Iometer configuration file)
for later use in another run of Iometer. This file is
stored as ASCII text and is (with some practice) human
readable.

Another component of the Iometer workload
specification is the number of outstanding I/O’s to keep
active against the target file (or device). Iometer uses
the asynchronous I/O capabilities of Windows 2000 to
implement this feature.

The Iometer workload specification allows the file
system target of the benchmark to be specified as a file
or a Windows disk partition (e. g. “all of D:”).

Iometer supports a number of different iteration modes
that control how to run a series of benchmark
experiments. For example, one can specify that the
benchmark be repeated for 1, 4, 16, 64, and 256
outstanding I/O’s. Also, if multiple access
specifications are assigned to a particular worker, one
can request that the benchmark be repeated for each
such access specification. This iteration can be

combined with the iteration on outstanding I/O’s if
desired.

Iometer also supports remote disk workers (workers on
machines network attached to the machine where
Iometer is running) as well as network targets that can
be used to measure network bandwidth.

4 The Pgmeter Implementation
Pgmeter supports a set of features similar to a subset of
the facilities of Iometer. In particular, pgmeter can
read and parse an Iometer configuration file (.icf file)
provided it meets the following restrictions:

1. Only file system targets are supported. No
network targets or disk partition targets are
supported.

2. Only local disk workers are supported. Pgmeter
does not support remote disk workers.

3. The only methods of iteration that are supported
by pgmeter are “Normal” or “Cycle_Out-
standing_IOS” . These two modes include the
iteration mode described in the last section; these
modes are the ones we have found most useful in
our studies.

Unlike Iometer, pgmeter allows the user to specify the
target file name on the command line. (The target, or
data, file name is the file to and from which the data
transfer rate is measured.) Thus, the restriction on
disk targets is minor since the effect of a disk partition
target can be achieved under pgmeter by specifying as
the file name to the pgmeter command the block device
name of an entire partition.

Also not implemented in pgmeter are a wide range of
features supported by Iometer, including, a graphical
configuration user interface, the ability to create,
modify and save configuration files, and a fully
graphical display of results. (For our purposes under
Linux, we have found “vi” to be an acceptable
substitute for the graphical configuration interface of
Iometer, since in most cases we are simply modifying
an existing .icf file.)

Since Linux does not directly support asynchronous
I/O (multiple threads are used inside of glibc to support
the POSIX AIO interface), and because we wanted to
port our code to Windows using the Cygwin library
(where AIO is not supported), we decided to simulate
the outstanding I/O’s facility of Iometer using multiple
processes.3 However, this had to be done carefully in

3 Due to the similarity of processes and threads under
both Linux and Cygwin, we will also use the term
threads in the rest of the paper.

order to simulate the same workload as Iometer. If, for
example, one were to merely create N processes to
simulate N outstanding I/O’s and not carefully
coordinate them, then random disk head movement
can occur that will dramatically change the observed
I/O rate and I/O bandwidth.

To solve this problem, a global “current sector address”
(or CSA) is maintained for each file in a pgmeter test.
Each child process updates the CSA for its file
according to the following algorithm:

1. Choose a line from the access specification
according to that line’s probability.

2. Read the global CSA.
3. Using the “% Random” field from the chosen

access line as the probability of choosing random
access, make a random choice to determine if this
access is to be a “ random access” or a “sequential
access” . For sequential access go to step 5. Else
go to Step 4.

4. (Random access.) Choose a random seek point as
a new-CSA and exchange and swap that new
value into the CSA. If the exchange and swap
fails, reread the CSA, choose another new-CSA
seek point in the file and try again until success.
Go to step 6.

5. (Sequential access.) Using the “Size” field of
the current access line, calculate a new-CSA by
adding the “Size” field (converted to sectors). If
this new address is past the end of the file, set the
new-CSA to sector 0 of the file. Exchange and
swap the new-CSA into the CSA. If the exchange
and swap fails, reread the CSA, calculate a new
value for the new-CSA and try again until success.

6. Using the “% Read” field from the chosen access
line as the probability of choosing read access,
make a random choice to determine if this access
is to be a read or write.

7. Seek to the sector address new-CSA of the file and
do the read or write request for “size” bytes.

In this way, if an access line specifies 100% sequential
accesses (0 percent random) each process will request
the next record in the file in order. Of course, this is
an approximation since after a process has selected a
record in the file to read, that process may be
suspended before it is able to issue its I/O request.
Nonetheless, as we shall show in the next section, this
technique is sufficiently good that it allows pgmeter to
simulate the Iometer workload to a high degree of
accuracy.

Internally, pgmeter is divided into four modules: (1)
the configuration module, (2) the display module(s),
(3) the worker module and (4) the monitoring module.

The configuration module is responsible for parsing
the configuration files. At the present time, only
configuration files generated by Iometer are supported.
(Ultimately pgmeter will also support configuration file
creation and editing and we envision defining a new
pgmeter configuration-file format.) During parsing, the
configuration module builds the configuration data
structures used to drive the remainder of the program

The display modules allow encapsulation of different
methods of displaying real-time execution results. At
present, the only available display module supports a
curses-based bar-graph representation of the data. A
Gtk based strip-chart display module is under
development, but is not presently available.

The worker module is where the real work of pgmeter
is performed. This module reads the configuration data
structures created by the parser module and runs the
tests described there. The worker module includes the
threads that actually perform the I/O. The worker
threads also place individual statistics into the shared
memory area for collection by the monitor module.

The final module is the monitor module, which is
responsible for starting and stopping the worker
threads, monitoring their execution, calling the display
module(s) with updated information and printing
results.

5 Benchmark Results
In this section we report the results of two benchmark
experiments:

1. A series of experiments run under Windows 2000
Professional comparing Iometer and a version of
pgmeter ported to Windows using the Cygwin4
library.

2. A series of experiments that compare pgmeter
running under Cygwin (and Windows) to pgmeter
running under Linux 2.4.9.

The purpose of the first series of experiments is to
demonstrate that pgmeter appears to synthesize the
same disk I/O workload that Iometer does. The
purpose of the second series of experiments is to
provide an example of the utility of pgmeter in file
system benchmark studies and to provide a comparison
of the performance of the file systems of Windows
2000 and Linux.

4 Cygwin is a Unix environment for Windows. Here
we are using the Cygwin library that provides a Unix
emulation layer, which allowed us to easily port
pgmeter to Windows.

Iometer and Pgmeter Comparison

As mentioned before in this paper, Iometer uses the
FILE_NO_BUFFER attribute when creating or
opening its data files. This attribute causes Windows
to bypass use of the file-system cache when accessing
the file. In order to provide a fair comparison we
modified the Cygwin library to support a new flag on
the Cygwin open() call: O_NOBUFFER. When this
flag is encountered during a Cygwin open(), it causes
the library to include FILE_NO_BUFER on the call to
the Windows routine CreateFile(). Pgmeter was then
modified to provide a command-line option to control
opening of its test files using this new flag. In this
way, both programs use the same operating system
interface to access their data files.

Iometer was used to create the data files, and both
programs use the same data files. This avoided any
bias due to placement or fragmentation of the target
files. The disk defragmentation tool of Windows 2000
Professional was used to make sure that the data file
was a single extent and was not fragmented in any
way. (The data file was 1GB in size). The data file was
on its own physical volume with the Windows
operating system on another physical volume in order
to reduce operating system interference as much as
possible. The data volume was formatted with NTFS.
Finally, the Windows performance monitor tool was
used to measure disk data transfer rates and disk
request sizes to make sure that these matched what we
expected the programs to generate.

Three trials were conducted on three identically
configured machines (See the Appendix for machine
descriptions). A total of 78 different test cases were
run for each trial under Iometer and pgmeter
respectively. (A test case is one benchmark run;
running a particular access specification with 3
different outstanding I/O counts is considered 3 trials).
A complete list of the test cases used is given in the
Appendix.

The principal statistic examined for the sequential tests
was data bandwidth in MB/s. The principal statistic
for the random and mixed tests (web server, file server,
OLTP) was number of I/O’s per second.

At the end of the test, the statistics for the three trials
from each test case were averaged and corresponding
average results were compared. In all of the trials the
maximum difference between the average statistics for
Iometer and pgmeter was 2.5%. We thus feel
confident in stating that pgmeter simulates the same
workload that Iometer simulates.

One limitation of this testing technique is that pgmeter
under Cygwin cannot support more than 63
outstanding I/O’s. This is a limitation of the Cygwin
library since it depends on using Windows wait objects
to implement wait(). Thus it is impossible to have
more than 63 child processes in Cygwin. For our tests
we typically use a geometric sequence of outstanding
I/Os (1, 2, 4, 8, 16, etc) so for the pgmeter to Iometer
comparison tests we capped the number of outstanding
I/O’s at 32.

Windows 2000 and Linux 2.4.9 Comparison

Having demonstrated the equivalence of pgmeter and
Iometer under Windows, we next decided to compare
file-system performance under Windows and Linux by
running pgmeter on each system. Unfortunately, there
is no analogue to the FILE_NO_BUFFER flag under
Linux. Additionally, there is no good way to
implement such a flag in Linux. This is because the
implementation of the Linux file-system is closely tied
to the behavior of the file-system cache. For example,
while it possible to write a simple system call to flush a
page from the file-system cache before reading the
page, the result of this action is to defeat the read-
ahead logic in the kernel. This results in very poor file-
system read performance.

Given this, we decided to fall back on a time-honored
technique for file-system performance measurement:
On each system, we used a file that was several times
larger than the main memory of the machine. In this
case the machines had 512 MB of RAM and we used a
2 GB file. Also, the FILE_NO_BUFFER flag was not
used in pgmeter during this sequence of Windows
benchmarks. These rules were designed to provide a
fair as possible comparison between the two systems.

Four identical machines were used for these tests;
descriptions of the machines are given in the
Appendix. The data file for the test was again on a
dedicated physical disk and the operating system was
on a separate disk. On the Windows systems the file
was created on an otherwise empty NTFS partition
(except for the ever-present Windows system files). On
the Linux systems the data file was created on a newly
mkfs’d ext2 file system partition. As before, 3 trials of
each case were completed and we report here statistics
that are the average of the statistics from the 3 trials.
Each case consisted of a 30 second warm-up period
followed by a 5 minute run for data collection.

To further ensure that file-system cache effects did not
bias the results, the systems were rebooted after the
sequential trials had completed and again after the
random trials had completed (i.e. before the mixed

tests such as OLTP, file server, workstation, and web
server were begun). We also repeated the first two
cases of each series of runs at the end of the series. We
saw no significant difference between those repeated
cases. This indicates that caching effects during a
series between reboots were not significant.

Comparisons between the two systems are reported in
Figures 1-6. In Figure 1 (sequential read tests), we see
that Linux provides better read performance at 4 and
16 threads (outstanding I/O’s), while for 1 thread
Linux and W2K are pretty much equivalent except at
the 64 K record size where W2K performance falls off
significantly. In Figure 2 (sequential write tests) we
see that W2K is around 10% better than Linux and that
performance is insensitive to either the number of
outstanding I/O’s or the record size. Figure 3 (random
read tests) shows that Linux and W2K are more or less
equivalent at 1 and 4 threads, but that Linux is faster at
16 threads. In Figure 4 (random write tests) we see
that W2K is faster than Linux except for the smaller
record sizes and 1 thread. Linux on the other hand,
seems to be relatively insensitive to the number of
outstanding I/O’s and the important factor in
determining the I/O rate is the record size. Finally, in
Figures 5 and 6 we see that Linux consistently
outperforms W2K for the 8K OLTP, Workstation, File
Server, and Web Server workloads.

Of course, ext2fs is not a journaling file system, while
NTFS is, so in that sense these comparisons are not
completely fair. For many applications, the slight
performance disadvantage of a journaling file system is
outweighed by its improved recovery times in case of
system failure. Further comparisons of this type should
be performed using a journaling file system under
Linux.

6 Status and Future Work
At the moment, the interface to pgmeter is a command-
line interface only. There is a rudimentary graphics
output using curses. Multiple threads of execution are
supported on the system where pgmeter is executing;
remote worker threads for simultaneous benchmarking
of multiple servers are not yet supported.

 In the future, we expect to develop a GUI for pgmeter
and fancier graphics output. Support is not currently
planned for remote-worker threads or network tests.
However, we are planning on making pgmeter
available as open source and an open source project for
this purpose has been created at
pgmeter.sourceforge.net. Perhaps someone in the
open source community will decide to add additional

functionality to pgmeter such as remote workers,
network tests, or a nice GUI.

The Linux 2.4.9 ext2 to Windows 2000 NTFS
comparisons indicate that while Linux performs better
for many of the read-intensive cases, there is room for
improvement in the sequential and random write cases.
Of course, this is a comparison between a non-
journaling and a journaling file system. Further
comparisons of this type should be done using a
journaling file system under Linux.

7 Acknowledgements
The authors would like to acknowledge the support
and assistance of the management at Times N Systems
in the creation of this paper. We additionally
acknowledge the contributions that VA Linux, Inc. has
made through the SourgeForge project.

8 References
[AdRaid] http://www.adaptec.com/pdfs/

3210S_vs_mylex352_final.pdf
[Iometer] http://developer.intel.com/design/

servers/devtools/Iometer/index.htm
[Bonnie] http://www.textuality.com/bonnie
[Bonnie++] http://www.sourcepole.com/sources/

reviews/raid
[Cygwin] http://www.cygwin.com
[Dbench] http://www.samba.org
[Dvault] http://www.dell.com/us/en/esg/topics/

power_ps4q00-power.htm
[Etesting] http://www.etestinglabs.com/main/

reports/baiomtr.pdf
[ext3] http://www.us.kernel.org/pub/linux/

kernel/people/sct/ext3
[IntelPers] Personal Communication.
[Iometer] http://developer.intel.com/design/servers/

devtools/iometer/index.htm
[IOzone] http://www.iozone.org
[JFS] http://oss.software.ibm.com/jfs
[Nbench] http://www.acnc.com/benchmarks/

ntiogen.zip
[Netbench] http://www.etestinglabs.com/benchmarks/

netbench/netbench.asp
[NetC] http://www.networkcomputing.com/1209/

1209f28.html
[NWF] http://www.nwfusion.com/reviews/2000/

0821revhow.html
[PostMark] http://www.netapp.com/tech_library/

3022.html
[ReiserFS] http://www.reiserfs.org
[Samba] http://www.samba.org
[StoReview] http://www.storagereview.com
[XFS] http://oss.sgi.com/projects/xfs

Appendix

Workload Descr iptions
For all of the workloads used in this paper, the delay
parameter is zero and the burst size is one for all
access lines of this access specification. The
alignment specification is 0 for all of the access lines;
this implies sector-level alignment.

OLTP

This workload is a single record size (8 KB) with 67%
reads and 100% random access.

Workstation

This is the Storage Review.com’s workload. It is
defined as 8KB records, 80% reads, 80% random
access.

File Server

The File Server workload uses the following request
size distribution:

Size Percent % Read % Random

512 10 80 100

1024 5 80 100

2048 5 80 100

4096 60 80 100

8192 2 80 100

16384 4 80 100

32768 4 80 100

65536 10 80 100

Web Server

The Web Server workload uses the following request
size distribution:

Size Percent % Read % Random

512 22 100 100

1024 15 100 100

2048 8 100 100

4096 23 100 100

8192 15 100 100

16384 2 100 100

32768 6 100 100

65536 7 100 100

131072 1 100 100

524288 1 100 100

Machines Used for the Benchmarks
For the pgmeter to Iometer comparisons under
Microsoft Windows, the machines used were Intel
LG440GX motherboards with 700 MHZ PIII
processors and 2048 MB of RAM. The SCSI disk
adapters used were the Adaptec AIC-7896/7 Ultra2
SCSI host adapters. The machines each had three

Quantum ATLAS10K2-TY092L, 9 GB, 10 K disk
drives. The operating system used was Windows 2000
Professional with Service Pack 2. The version of
Cygwin used to run pgmeter was 1.3.2-1 modified and
recompiled to support the O_NOBUFFER flag on
open().

For the W2K to Linux comparisons, the machines used
were Dell PrecisionTM 330s, with 1500 MHZ
Pentium 4 processors and 512 MB of RAM. The SCSI
disk adapters were Adaptec 29160N Ultra 160 SCSI
adapters. Each machine had two Fujtisu
MAH3364MP, 36 GB, 10K disk drives. The operating
systems used were Microsoft Windows 2000
Professional with Service Pack 2 and Linux 2.4.9 as
downloaded from www.kernel.org and recompiled for
Pentium 4.

Iometer and Pgmeter Compar ison Cases
Sequential read and write cases were run for record
sizes of 4 KB, 8 KB, 16 KB, 32 KB and 64 KB with 1,
4, and 16 outstanding I/O’s for each case (30 cases).
Random read and write cases were run for record sizes
of 1 KB, 2 KB, 4 KB, and 8 KB with 1, 14 and 16
outstanding I/O’s for each case (24 cases). The 8 K
OLTP, File Server, Web Server, and Workstation
workloads were run with 1, 2, 4, 8, 16, and 32
outstanding I/O’s (24 cases).

The run rules for the test cases were: 30-second warm-
up for each case followed by a 5 minute run to measure
the data. Each set of trials was repeated 3 times and
the results of the trials were averaged to produce the
observed statistic. Since the file-system cache was
bypassed during these runs, no reboot of the system
between runs was required.

Trademark Information

Linux® is a registered trademark of Linus Torvalds in
the United States and other countries.
Microsoft® and Windows® are registered trademarks
of Microsoft Corporation.
IBM® is a registered trademark of IBM, Inc. in the
United States and other countries.
NetBench® and WinBench® are registered trademarks
of Ziff Davis Media Inc.
Intel® and Pentium® are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.
CygwinTM is a trademark of Red Hat, Inc. in the United
States and other countries.
SourceForgeTM is a trademark of VA Linux Systems,
Inc.

SGITM and XFSTM are trademarks of Silicon Graphics,
Inc.
Adaptec® is a trademark or registered trademark of
Adaptec, Inc.
Dell® is a registered trademark and PrecisionTM is a
trademark of Dell Computer Corporation.

All other trademarks and copyrights in this paper are
property of their respective owners.

Figure 1: W2K NTFS vs Linux 2.4.9 ext2
Sequential Read Benchmark

0
5

10
15
20
25
30
35
40
45
50

4 K 8 K 16 K 32 K 64 K

I/O Request Size

D
at

a
R

at
e

(M
B

/s
) Linux 1 Thread

Linux 4 Threads

Linux 16 Threads

W2K 1 Thread

W2K 4 Threads

W2K 16 Threads

Figure 2: W2K NTFS vs Linux 2.4.9 ext2
Sequential Write Benchmark

20

25

30

35

40

45

4 K 8 K 16 K 32 K 64 K

I/O Request Size

D
at

a
R

at
e

(M
B

/s
) Linux 1 Thread

Linux 4 Threads

Linux 16 Threads

W2K 1 Thread

W2K 4 Threads

W2K 16 Threads

Figure 3: W2K NTFS vs Linux 2.4.9 ext2
Random Read Benchmark

150

200

250

300

350

400

450

500

1 K 2 K 4 K 8 K

I/O Request Size

D
at

a
R

at
e

 (
I/O

s
 /s

)

Linux 1 Thread

Linux 4 Threads

Linux 16 Threads

W2K 1 Thread

W2K 4 Threads

W2K 16 Threads

Figure 4: W2K NTFS vs Linux 2.4.9 ext2
 Random Write Benchmark

0
50

100
150
200
250
300
350
400
450

1 K 2 K 4 K 8 K

I/O Request Size

D
at

a
R

at
e

 (
I/O

s
 /s

)

Linux 1 Thread

Linux 4 Threads

Linux 16 Threads

W2K 1 Thread

W2K 4 Threads

W2K 16 Threads

Figure 5: W2K NTFS vs Linux 2.4.9 ext2
File System Benchmark

100

120

140

160

180

200

220

240

1 2 4 8 16 32

Threads

D
at

a
R

at
e

(I
/O

s
/s

) Linux 8K OLTP

Linux Workstation

W2K 8K OLTP

W2K Workstation

Figure 6: W2K NTFS vs Linux 2.4.9 ext2
File System Benchmark

100

150

200

250

300

350

1 2 4 8 16 32
Threads

D
at

a
R

at
e

(I
/O

s
/s

)

Linux File Server

Linux Web Server

W2K File Server

W2K Web Server

